Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Chloro-3-ethyl-10-phenyl-2-tosylpyrrolo[3,4-b]quinoline

D. Sudha,^a‡ K. Chinnakali,^a§ M. Jayagobi,^b R. Raghunathan^b and Hoong-Kun Fun^c*

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 13 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 48.9.

The pyrrolidine ring of the title molecule, $C_{26}H_{27}CIN_2O_2S$, adopts a twist conformation, while the tetrahydropyridine ring is in a half-chair conformation. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The pyrrolidine and tetrahydropyridine rings are *trans*-fused. The pyrrolidine-fused benzene ring forms dihedral angles of 73.95 (2) and 19.18 (5)°, respectively, with the benzene ring of the chlorobenzene and tosyl groups. The screw-related molecules are linked into a chain along the [010] direction by N-H···O hydrogen bonds, and the chains are cross-linked into a three-dimensional network by C-H··· π interactions and weak π - π interactions [centroid–centroid distance = 3.7488 (5) Å].

Related literature

For general background, see: Anzini *et al.* (1990, 1992); Crenshaw *et al.* (1976); Fujita *et al.* (1996); Xiao *et al.* (2006). For a related structure, see: Sudha *et al.* (2007). For ringpuckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax *et al.* (1976). For bondlength data, see: Allen *et al.* (1987).

[‡] Working at: Department of Physics, RMK Engineering Collge, RSM Nagar, Kavaraipettai 601206, Tamil Nadu, India.
§ Additional correspondence author, email: kali@annauniv.edu.

Experimental

Crystal data

 $C_{26}H_{27}ClN_2O_2S$ $M_r = 467.01$ Monoclinic, $P2_1/c$ a = 9.5843 (2) Å b = 13.2007 (2) Å c = 20.3414 (3) Å $\beta = 115.550$ (1)°

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.780, T_{max} = 0.897$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.109$	independent and constrained
S = 1.03	refinement
14373 reflections	$\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$
294 parameters	$\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4-C9 benzene ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H1N2 \cdots O1^{i}$ $C25 - H25B \cdots O2$ $C23 - H23 - Ca1^{ii}$	0.829 (14)	2.358 (14)	3.1454 (8)	159 (2)
	0.97	2.51	3.1399 (9)	123
	0.98	2.85	3.7962 (8)	163

V = 2321.91 (7) Å³

Mo Ka radiation

 $\mu = 0.28 \text{ mm}^{-1}$

 $R_{\rm int} = 0.043$

T = 100.0 (1) K

 $0.50 \times 0.41 \times 0.40 \text{ mm}$

115565 measured reflections

14373 independent reflections

11857 reflections with $I > 2\sigma(I)$

Z = 4

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF thanks Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/ 671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2445).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Anzini, M., Cappelli, A., Vomero, S., Botta, M. & Cagnotto, A. (1990). *Farmaco*, 45, 1169–1179.
- Anzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Farmaco, 47, 191–202.
- Bruker (2005). *APEX2* (Version 1.27), *SAINT* (Version 7.12a) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Crenshaw, R. R., Luke, G. M. & Siminoff, P. (1976). J. Med. Chem. 19, 262-275.

Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). *Topics in Stereochemistry*, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.

Fujita, M., Egawa, H., Miyamoto, T., Nakano, J. & Matsumoto, J. (1996). Eur. J. Med. Chem. 31, 981–988. Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Sudha, D., Chinnakali, K., Jayagopi, M., Raghunathan, R. & Fun, H.-K. (2007). *Acta Cryst.* E63, 04912–04913.
 Xiao, X.-S., Antony, S., Pommier, Y. & Cushman, M. (2006). *J. Med. Chem.* 49,
- 1408–1412.

Acta Cryst. (2007). E63, o4914-o4915 [doi:10.1107/S1600536807062356]

7-Chloro-3-ethyl-10-phenyl-2-tosylpyrrolo[3,4-b]quinoline

D. Sudha, K. Chinnakali, M. Jayagobi, R. Raghunathan and H.-K. Fun

Comment

Pyrrolo[3,4-*b*]quinoline derivatives exhibit cytotoxic (Xiao *et al.*, 2006), antibacterial (Fujita *et al.*, 1996) and interferon inducing activities (Crenshaw *et al.*, 1976). They are also found to bind benzodiazepine receptors (Anzini *et al.*, 1990, 1992). Previously, we have reported the crystal structure of a pyrrolo[3,4-*b*]quinoline derivative (Sudha *et al.*, 2007). We report herein the crystal structure of the title pyrroloquinoline derivative, (I), Fig. 1.

Bond lengths and angles show normal values (Allen *et al.*, 1987), and are comparable with those in a related structure (Sudha *et al.*, 2007). As a result of the repulsive interaction between the short S=O bonds, atom S1 has a distorted tetrahedral configuration, with the O2—S1—O1 [119.63 (4)°] angle deviating significantly from ideal tetrahedral value.

The pyrrolidine ring has a twist conformation, with the local twofold rotation axis passes through atom N1 and the midpoint of the bond C2—C10. The relevant asymmetry parameters $\Delta C_2[C2$ —C10] (Duax *et al.*, 1976) and the puckering parameters q₂ and φ (Cremer & Pople, 1975) are 0.24 (7)°, 0.4686 (8) Å and 90.05 (9)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position.

The tetrahydropyridine ring adopts a half-chair conformation with a local twofold rotation axis passing through the midpoints of the C4—C9 and C2—C10 bonds; the puckering (Q, θ , φ) and asymmetry ($\Delta C_2[C4-C9]$) parameters are 0.4744 (8) Å, 133.81 (10)°, 89.08 (13)° and 2.29 (10)°, respectively. The pyrrolidine and tetrahydropyridine rings are *trans*-fused. The C19—C24 phenyl ring forms dihedral angles of 73.95 (2) and 19.18 (5)°, respectively, with the C4—C9 and C12—C17 benzene rings.

The screw-related molecules are linked into a chain along the [0 1 0] direction by N—H···O hydrogen bonds. The chains are cross-linked into a three-dimensional network (Fig.2) by C—H··· π interactions involving the C3—H3 group and the C4—C9 benzene ring (centroid *Cg*1) of the molecule at (-x, 1 - y, -z), and π - π interactions between the C12—C17 benzene rings of molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) [centroid-centroid distance is 3.7488 (5) Å].

Experimental

InCl₃ (20 mol%) was added to a mixture of 2-(*N*-cinnamyl-*N*-tosylamino)butanal (1 mmol) and arylamine (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 30 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was evaporated *in vacuo* and the crude product was chromatographed using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement

The N-bound H atom was located from a difference map and refined freely with an isotropic displacement parameter. The remaining H atoms were positioned geometrically (C—H = 0.93-0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. A rotating group model was used for the methyl groups attached to aromatic rings.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 80% probability level.

Fig. 2. Part of the three-dimensional network in the title compound. Dashed and dotted lines indicate N—H···O and C—H··· π interactions, respectively. The π - π interaction is shown by a dashed open line. For the sake of clarity, H atoms not involved in the interactions have been omitted.

7-Chloro-3-ethyl-10-phenyl-2-tosylpyrrolo[3,4-b]quinoline

Crystal data	
C ₂₆ H ₂₇ ClN ₂ O ₂ S	$F_{000} = 984$
$M_r = 467.01$	$D_{\rm x} = 1.336 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9717 reflections
a = 9.5843 (2) Å	$\theta = 2.4 - 41.9^{\circ}$
b = 13.2007 (2) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 20.3414 (3) Å	T = 100.0 (1) K
$\beta = 115.550 \ (1)^{\circ}$	Block, colourless
$V = 2321.91 (7) \text{ Å}^3$	$0.50\times0.41\times0.40~mm$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	14373 independent reflections
Radiation source: fine-focus sealed tube	11857 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 40.0^{\circ}$

T = 100.0(1) K	$\theta_{\min} = 2.2^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -23 \rightarrow 23$
$T_{\min} = 0.780, \ T_{\max} = 0.897$	$l = -36 \rightarrow 36$
115565 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 0.4777P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
14373 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
294 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.46322 (2)	0.604543 (14)	-0.054121 (10)	0.01947 (4)
S1	0.61137 (2)	0.510831 (13)	0.338265 (10)	0.01478 (4)
01	0.66669 (7)	0.40806 (4)	0.35158 (3)	0.02040 (10)
O2	0.72013 (7)	0.59313 (4)	0.36178 (3)	0.01988 (10)
N1	0.51131 (7)	0.52196 (4)	0.25005 (3)	0.01442 (9)
N2	0.20015 (7)	0.68671 (4)	0.12988 (4)	0.01623 (10)
H1N2	0.2303 (16)	0.7428 (10)	0.1229 (8)	0.028 (3)*
C1	0.37966 (8)	0.44894 (5)	0.21613 (4)	0.01491 (10)
H1A	0.3709	0.4054	0.2526	0.018*
H1B	0.3917	0.4073	0.1796	0.018*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C2	0.24059 (8)	0.51861 (5)	0.18181 (4)	0.01314 (10)
H2	0.2183	0.5463	0.2210	0.016*
C3	0.09024 (8)	0.47624 (5)	0.12322 (4)	0.01293 (10)
H3	0.1152	0.4373	0.0887	0.016*
C4	-0.01388 (8)	0.56469 (5)	0.08214 (4)	0.01342 (10)
C5	-0.17147 (8)	0.54847 (5)	0.03904 (4)	0.01475 (10)
Н5	-0.2130	0.4843	0.0371	0.018*
C6	-0.26683 (8)	0.62687 (5)	-0.00093 (4)	0.01552 (10)
C7	-0.20779 (9)	0.72344 (5)	0.00073 (4)	0.01768 (11)
H7	-0.2718	0.7755	-0.0268	0.021*
C8	-0.05244 (9)	0.74104 (5)	0.04386 (4)	0.01753 (11)
H8	-0.0128	0.8058	0.0455	0.021*
C9	0.04660 (8)	0.66348 (5)	0.08514 (4)	0.01436 (10)
C10	0.30748 (8)	0.60324 (5)	0.15364 (4)	0.01342 (10)
H10	0.3284	0.5787	0.1133	0.016*
C11	0.45891 (8)	0.62662 (5)	0.21984 (4)	0.01418 (10)
H11	0.4354	0.6651	0.2550	0.017*
C12	0.48094 (8)	0.52634 (5)	0.37754 (4)	0.01599 (11)
C13	0.44059 (9)	0.62360 (6)	0.39012 (4)	0.01736 (11)
H13	0.4866	0.6801	0.3804	0.021*
C14	0.33104 (9)	0.63518 (6)	0.41731 (4)	0.02117 (13)
H14	0.3060	0.6999	0.4268	0.025*
C15	0.25807 (10)	0.55165 (7)	0.43055 (5)	0.02340 (14)
C16	0.30038 (11)	0.45522 (7)	0.41780 (5)	0.02539 (15)
H16	0.2529	0.3988	0.4266	0.030*
C17	0.41188 (10)	0.44177 (6)	0.39219 (5)	0.02144 (13)
H17	0.4403	0.3769	0.3849	0.026*
C18	0.13611 (13)	0.56452 (10)	0.45801 (6)	0.0352 (2)
H18A	0.1420	0.6317	0.4770	0.053*
H18B	0.1529	0.5160	0.4958	0.053*
H18C	0.0357	0.5540	0.4187	0.053*
C19	0.02137 (8)	0.40411 (5)	0.15955 (4)	0.01436 (10)
C20	-0.05309 (10)	0.44085 (6)	0.20051 (5)	0.02128 (13)
H20	-0.0713	0.5100	0.2011	0.026*
C21	-0.10042 (12)	0.37489 (8)	0.24045 (5)	0.02782 (17)
H21	-0.1509	0.4000	0.2671	0.033*
C22	-0.07219 (11)	0.27164 (7)	0.24043 (5)	0.02752 (17)
H22	-0.1026	0.2276	0.2675	0.033*
C23	0.00145 (10)	0.23441 (6)	0.19981 (5)	0.02406 (15)
H23	0.0206	0.1653	0.1998	0.029*
C24	0.04692 (9)	0.30017 (5)	0.15897 (4)	0.01788 (12)
H24	0.0946	0.2745	0.1312	0.021*
C25	0.57811 (9)	0.68532 (5)	0.20407 (4)	0.01726 (11)
H25A	0.5364	0.7520	0.1863	0.021*
H25B	0.6696	0.6946	0.2496	0.021*
C26	0.62696 (10)	0.63715 (7)	0.14935 (5)	0.02466 (15)
H26A	0.7018	0.6797	0.1432	0.037*
H26B	0.5382	0.6295	0.1034	0.037*
H26C	0.6717	0.5719	0.1669	0.037*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01587 (7)	0.02092 (8)	0.01830 (8)	0.00043 (5)	0.00424 (6)	0.00035 (5)
S1	0.01325 (7)	0.01446 (7)	0.01487 (7)	0.00160 (5)	0.00440 (6)	0.00037 (5)
O1	0.0208 (3)	0.0166 (2)	0.0214 (3)	0.00656 (18)	0.0068 (2)	0.00265 (18)
O2	0.0148 (2)	0.0208 (2)	0.0205 (3)	-0.00274 (17)	0.00431 (19)	-0.00168 (18)
N1	0.0147 (2)	0.0130 (2)	0.0143 (2)	-0.00002 (16)	0.00514 (19)	0.00044 (17)
N2	0.0149 (2)	0.0112 (2)	0.0212 (3)	0.00013 (17)	0.0065 (2)	0.00268 (18)
C1	0.0153 (3)	0.0122 (2)	0.0156 (3)	0.00003 (18)	0.0051 (2)	0.00010 (19)
C2	0.0144 (2)	0.0116 (2)	0.0139 (3)	-0.00003 (17)	0.0066 (2)	0.00053 (18)
C3	0.0144 (2)	0.0116 (2)	0.0138 (3)	0.00027 (17)	0.0069 (2)	0.00067 (17)
C4	0.0153 (2)	0.0124 (2)	0.0134 (3)	0.00074 (18)	0.0070 (2)	0.00097 (18)
C5	0.0157 (3)	0.0143 (2)	0.0140 (3)	0.00022 (19)	0.0061 (2)	0.00023 (19)
C6	0.0151 (3)	0.0168 (3)	0.0140 (3)	0.0015 (2)	0.0057 (2)	0.00011 (19)
C7	0.0176 (3)	0.0153 (3)	0.0186 (3)	0.0028 (2)	0.0064 (2)	0.0023 (2)
C8	0.0179 (3)	0.0130 (2)	0.0207 (3)	0.0017 (2)	0.0074 (2)	0.0030 (2)
C9	0.0152 (3)	0.0128 (2)	0.0155 (3)	0.00094 (18)	0.0070 (2)	0.00149 (19)
C10	0.0138 (2)	0.0120 (2)	0.0150 (3)	0.00031 (17)	0.0067 (2)	0.00106 (18)
C11	0.0155 (3)	0.0119 (2)	0.0153 (3)	0.00014 (18)	0.0068 (2)	-0.00002 (18)
C12	0.0169 (3)	0.0163 (3)	0.0139 (3)	0.0006 (2)	0.0057 (2)	-0.00019 (19)
C13	0.0165 (3)	0.0177 (3)	0.0160 (3)	0.0007 (2)	0.0053 (2)	-0.0019 (2)
C14	0.0194 (3)	0.0259 (3)	0.0173 (3)	0.0043 (2)	0.0071 (3)	-0.0017 (2)
C15	0.0203 (3)	0.0348 (4)	0.0162 (3)	0.0023 (3)	0.0088 (3)	0.0020 (3)
C16	0.0287 (4)	0.0283 (4)	0.0234 (4)	-0.0031 (3)	0.0153 (3)	0.0034 (3)
C17	0.0277 (4)	0.0185 (3)	0.0206 (3)	-0.0011 (2)	0.0128 (3)	0.0013 (2)
C18	0.0286 (4)	0.0551 (6)	0.0287 (5)	0.0069 (4)	0.0188 (4)	0.0065 (4)
C19	0.0141 (2)	0.0144 (2)	0.0146 (3)	-0.00066 (18)	0.0062 (2)	0.00182 (19)
C20	0.0241 (3)	0.0225 (3)	0.0228 (3)	0.0006 (2)	0.0153 (3)	0.0021 (2)
C21	0.0289 (4)	0.0359 (4)	0.0258 (4)	-0.0038 (3)	0.0185 (4)	0.0036 (3)
C22	0.0257 (4)	0.0325 (4)	0.0236 (4)	-0.0088 (3)	0.0098 (3)	0.0085 (3)
C23	0.0238 (4)	0.0187 (3)	0.0255 (4)	-0.0052 (2)	0.0066 (3)	0.0064 (3)
C24	0.0181 (3)	0.0143 (2)	0.0198 (3)	-0.0016 (2)	0.0068 (2)	0.0021 (2)
C25	0.0173 (3)	0.0151 (3)	0.0194 (3)	-0.0031 (2)	0.0079 (2)	-0.0008 (2)
C26	0.0233 (4)	0.0272 (4)	0.0296 (4)	-0.0060 (3)	0.0172 (3)	-0.0048 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C6	1.7447 (7)	C12—C17	1.3941 (11)
S1—O2	1.4373 (6)	C12—C13	1.3959 (10)
S1—O1	1.4392 (6)	C13—C14	1.3902 (11)
S1—N1	1.6360 (6)	С13—Н13	0.93
S1—C12	1.7619 (7)	C14—C15	1.3928 (13)
N1—C1	1.4988 (9)	C14—H14	0.93
N1—C11	1.5075 (9)	C15—C16	1.3938 (13)
N2—C9	1.3902 (9)	C15—C18	1.5069 (12)
N2—C10	1.4412 (9)	C16—C17	1.3875 (12)
N2—H1N2	0.830 (14)	C16—H16	0.93

C1—C2	1.5189 (9)	С17—Н17	0.93
C1—H1A	0.97	C18—H18A	0.96
C1—H1B	0.97	C18—H18B	0.96
C2—C10	1.5179 (9)	C18—H18C	0.96
C2—C3	1.5258 (10)	C19—C24	1.3947 (10)
С2—Н2	0.98	C19—C20	1.3970 (10)
C3—C19	1.5196 (9)	C20—C21	1.3936 (11)
C3—C4	1.5291 (9)	C20—H20	0.93
С3—Н3	0.98	C21—C22	1.3896 (14)
C4—C5	1.3977 (10)	C21—H21	0.93
C4—C9	1.4177 (9)	C22—C23	1.3875 (14)
C5—C6	1.3881 (10)	С22—Н22	0.93
С5—Н5	0.93	C23—C24	1.3950 (11)
C6—C7	1.3892 (10)	С23—Н23	0.93
С7—С8	1.3833 (11)	C24—H24	0.93
С7—Н7	0.93	C25—C26	1.5205 (11)
C8—C9	1.4025 (10)	C25—H25A	0.97
С8—Н8	0.93	C25—H25B	0.97
C10-C11	1.5262 (10)	C26—H26A	0.96
C10—H10	0.98	С26—Н26В	0.96
C11—C25	1.5247 (9)	С26—Н26С	0.96
C11—H11	0.98		
O2—S1—O1	119.63 (4)	N1—C11—H11	108.6
O2—S1—N1	107.16 (3)	C25—C11—H11	108.6
O1—S1—N1	106.57 (3)	C10-C11-H11	108.6
O2—S1—C12	108.41 (4)	C17—C12—C13	120.18 (7)
O1—S1—C12	107.47 (4)	C17—C12—S1	119.93 (6)
N1—S1—C12	106.98 (3)	C13—C12—S1	119.79 (5)
C1—N1—C11	109.60 (5)	C14—C13—C12	119.38 (7)
C1—N1—S1	115.22 (5)	C14—C13—H13	120.3
C11—N1—S1	117.65 (5)	С12—С13—Н13	120.3
C9—N2—C10	116.86 (6)	C13—C14—C15	121.21 (7)
C9—N2—H1N2	115.7 (10)	C13—C14—H14	119.4
C10—N2—H1N2	119.3 (10)	C15—C14—H14	119.4
N1—C1—C2	102.70 (5)	C14—C15—C16	118.45 (7)
N1—C1—H1A	111.2	C14—C15—C18	121.13 (9)
C2—C1—H1A	111.2	C16-C15-C18	120.42 (9)
N1—C1—H1B	111.2	C17—C16—C15	121.31 (8)
C2—C1—H1B	111.2	С17—С16—Н16	119.3
H1A—C1—H1B	109.1	С15—С16—Н16	119.3
C10-C2-C1	100.92 (5)	C16—C17—C12	119.43 (8)
C10—C2—C3	112.66 (6)	С16—С17—Н17	120.3
C1—C2—C3	118.88 (5)	С12—С17—Н17	120.3
С10—С2—Н2	107.9	C15-C18-H18A	109.5
C1—C2—H2	107.9	C15—C18—H18B	109.5
С3—С2—Н2	107.9	H18A—C18—H18B	109.5
C19—C3—C2	108.17 (5)	C15—C18—H18C	109.5
C19—C3—C4	115.23 (5)	H18A—C18—H18C	109.5
C2—C3—C4	108.71 (5)	H18B—C18—H18C	109.5

С19—С3—Н3	108.2	C24—C19—C20	118.91 (6)
С2—С3—Н3	108.2	C24—C19—C3	119.84 (6)
С4—С3—Н3	108.2	C20—C19—C3	120.88 (6)
C5—C4—C9	118.63 (6)	C21—C20—C19	120.61 (8)
C5—C4—C3	119.98 (6)	C21—C20—H20	119.7
C9—C4—C3	121.37 (6)	C19—C20—H20	119.7
C6—C5—C4	120.90 (6)	C22—C21—C20	120.01 (8)
С6—С5—Н5	119.5	C22—C21—H21	120.0
С4—С5—Н5	119.5	C20-C21-H21	120.0
C5—C6—C7	120.77 (7)	C23—C22—C21	119.79 (7)
C5—C6—Cl1	119.93 (5)	C23—C22—H22	120.1
C7—C6—Cl1	119.30 (6)	C21—C22—H22	120.1
C8—C7—C6	119.03 (7)	C22—C23—C24	120.27 (8)
С8—С7—Н7	120.5	С22—С23—Н23	119.9
С6—С7—Н7	120.5	С24—С23—Н23	119.9
С7—С8—С9	121.50 (6)	C19—C24—C23	120.40 (7)
С7—С8—Н8	119.2	C19—C24—H24	119.8
С9—С8—Н8	119.2	C23—C24—H24	119.8
N2—C9—C8	118.88 (6)	C26—C25—C11	115.89 (6)
N2—C9—C4	121.93 (6)	C26—C25—H25A	108.3
C8—C9—C4	119.15 (6)	C11—C25—H25A	108.3
N2-C10-C2	109.44 (5)	С26—С25—Н25В	108.3
N2-C10-C11	114.26 (5)	С11—С25—Н25В	108.3
C2-C10-C11	102.21 (5)	H25A—C25—H25B	107.4
N2-C10-H10	110.2	C25—C26—H26A	109.5
С2—С10—Н10	110.2	С25—С26—Н26В	109.5
C11—C10—H10	110.2	H26A—C26—H26B	109.5
N1—C11—C25	113.80 (6)	С25—С26—Н26С	109.5
N1-C11-C10	101.37 (5)	H26A—C26—H26C	109.5
C25—C11—C10	115.53 (6)	H26B—C26—H26C	109.5
O2—S1—N1—C1	-173.83 (5)	C1—N1—C11—C25	-139.26 (6)
01—S1—N1—C1	56.99 (6)	S1—N1—C11—C25	86.54 (7)
C12—S1—N1—C1	-57.73 (5)	C1—N1—C11—C10	-14.57 (7)
O2—S1—N1—C11	-42.12 (6)	S1-N1-C11-C10	-148.77 (5)
O1—S1—N1—C11	-171.30 (5)	N2-C10-C11-N1	156.64 (5)
C12—S1—N1—C11	73.98 (5)	C2-C10-C11-N1	38.54 (6)
C11—N1—C1—C2	-14.91 (7)	N2-C10-C11-C25	-79.85 (7)
S1—N1—C1—C2	120.50 (5)	C2-C10-C11-C25	162.05 (5)
N1-C1-C2-C10	38.47 (6)	O2—S1—C12—C17	-151.08 (7)
N1—C1—C2—C3	162.15 (5)	O1—S1—C12—C17	-20.46 (8)
C10—C2—C3—C19	-171.57 (5)	N1—S1—C12—C17	93.66 (7)
C1—C2—C3—C19	70.74 (7)	O2—S1—C12—C13	32.48 (7)
C10-C2-C3-C4	-45.78 (7)	O1—S1—C12—C13	163.10 (6)
C1—C2—C3—C4	-163.48 (5)	N1-S1-C12-C13	-82.78 (7)
C19—C3—C4—C5	-41.97 (9)	C17—C12—C13—C14	-0.03 (11)
C2—C3—C4—C5	-163.54 (6)	S1-C12-C13-C14	176.40 (6)
C19—C3—C4—C9	139.68 (6)	C12—C13—C14—C15	-1.58 (12)
C2—C3—C4—C9	18.11 (8)	C13—C14—C15—C16	1.74 (13)
C9—C4—C5—C6	0.93 (10)	C13—C14—C15—C18	-178.26 (8)

C3—C4—C5—C6	-177.46 (6)	C14—C15—C16—C17	-0.31 (14)
C4—C5—C6—C7	0.21 (10)	C18—C15—C16—C17	179.69 (9)
C4—C5—C6—Cl1	-179.86 (5)	C15-C16-C17-C12	-1.26 (14)
C5—C6—C7—C8	-1.04 (11)	C13—C12—C17—C16	1.43 (12)
Cl1—C6—C7—C8	179.03 (6)	S1—C12—C17—C16	-175.00 (7)
C6—C7—C8—C9	0.72 (11)	C2—C3—C19—C24	-97.10 (8)
C10—N2—C9—C8	-161.70 (6)	C4—C3—C19—C24	141.03 (7)
C10—N2—C9—C4	20.69 (10)	C2—C3—C19—C20	75.81 (8)
C7—C8—C9—N2	-177.26 (7)	C4—C3—C19—C20	-46.05 (9)
C7—C8—C9—C4	0.42 (11)	C24—C19—C20—C21	0.33 (13)
C5—C4—C9—N2	176.37 (6)	C3—C19—C20—C21	-172.66 (8)
C3—C4—C9—N2	-5.25 (10)	C19—C20—C21—C22	0.70 (15)
C5—C4—C9—C8	-1.23 (10)	C20-C21-C22-C23	-0.80 (15)
C3—C4—C9—C8	177.14 (6)	C21—C22—C23—C24	-0.12 (14)
C9—N2—C10—C2	-47.74 (8)	C20-C19-C24-C23	-1.24 (12)
C9—N2—C10—C11	-161.64 (6)	C3—C19—C24—C23	171.81 (7)
C1—C2—C10—N2	-170.03 (6)	C22—C23—C24—C19	1.15 (13)
C3—C2—C10—N2	62.12 (7)	N1-C11-C25-C26	59.76 (9)
C1—C2—C10—C11	-48.55 (6)	C10-C11-C25-C26	-56.95 (9)
C3-C2-C10-C11	-176.40 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H1N2···O1 ⁱ	0.829 (14)	2.358 (14)	3.1454 (8)	159 (2)
C25—H25B…O2	0.97	2.51	3.1399 (9)	123
C3—H3···Cg1 ⁱⁱ	0.98	2.85	3.7962 (8)	163

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*, -*y*+1, -*z*.

Fig. 2

